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ABSTRACT 

We describe an efficient method for calculating hadronic three 

point functions in lattice gauge theory. We use the method to calculate 

the n-nucleon coupling constant and the coupling constants for the 

hadronic decays of the p and K* mesons and the A, Lx, and a* baryons. 
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1. INTRODUCTION 
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The valence [l] (quenched [2]) approximation to lattice QCO has 

been used so far in the calculation of hadron masses [l-3], magnetic 

moments [4], and weak operator matrix elements [5,6] and to study the 

nature of chiral symmetry breaking [7]. In the present article we ~$11 

use this approximation to evaluate the coupling constants for 

p-hm, K*+KK~, N+NNI, A-h, Z*-%x, E*-+Ax and E*+x. Our preliminary results 

for some of these quantities were reported in ref. [8]. 

Although the predictions we obtain are qualitatively reasonable, we 

believe that our main result is actually not a specific set of numbers 

but rather a demonstration that the method we present is workable. The 

essence of our method is the addition of an external pion source to the 

action for the quarks. Three point functions are then obtained by 

differentiating two point functions with respect to the external source. 

Thus our three point function calculations are not much more difficult 

than the standard two point function calculations [l-3] which have been 

used to obtain hadron masses. An extension of this method might 

eventually be used to evaluate higher n-point functions to obtain 

scattering amplitudes. 

We will begin, in Sect. II, by briefly defining our notation for 

the path Integral expression for vacuum expectation values in lattice 

QCO. In Sect. III we will review the procedure for extracting hadron 

masses from two-point functions, and coupling constants from three-point 

functions. In Sect. IV we ~411 discuss how we obtain three-point 

functions from two-point functions evaluated In an external field. In 

Sect. V we will present results for hadron masses obtained as a 
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by-product of the coupling constant calculations, and in Sect. VI we 

will describe the coupling constant evaluation itself. Sect. VII 

contains scme concluding remarks. In the Appendix we present a new and 

much improved method for statistical analysis of physlcal quantities. 
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II. PATH INTEGRAL 

The theory is defined on a four-dimensional hypercubic periodic 

lattice with lattice spacing a and periodicity N,, in the n direction. 

On each nearest neighbor lattice link (x,y) is defined a variable 

U(X,Y) E W3). On each lattice site are defined the Grassman variables 

$z,(x), G:,(x), where f Is a flavor index, s is a spin index running 

from 1 to 4 and c is a color index running from 1 to 3. Let the gauge 

actlon SG be the usual sum over plaquette contributions multiplied by 

go2 for bare gauge coupling constant go. Define the quark action SQ to 

be z$(x)C,,$(y) where the coupling matrix Cxy is -1 for x equal to y and 

K(rTrP)U(x,y) for y displaced from x by one link in the + direction. 

The hopping parameter K is (8r+2mOa) -1 , where m. is the bare quark mass 

and r is the chirality parameter. 

The vacuum expectation value of a product of quark fields and a 

function F of the link variables is 

<Fl$Ui)$(Vi)’ = Z-'/dr /dY F ~~("~)~(vi)exp(SG+SQ) s (2.1) 

where ui and vi are multi-indices combining position, flavor, spin and 

color, dP is a product of one copy of Haar measure on each independent 

link variable, dv is a Grassman integral over the quark fields, and 2 is 

defined by the condition <l>=l. If quark fields are integrated out of 

the path integral and the valence approximation is introduced, the 

vacuum expectation becomes 
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<F flli(u )q(v )> = Z-l\ dp F detlj IC;l,, I exp(SG) . (2.2) 
i j 

For any choice of uj and vJ eq. (2.2) can be evaluated numerically 

[l-8] by the combination of a Monte Carlo algorlthm [9] to perform the 

integral over link fields and a Gauss-Seidel iteration [lOI to determine 

the matrix elements of c -1 needed for each Monte Carlo link 

configuration. 
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III MASSES AND COUPLING CONSTANTS FROM CORRELATION FUNCTIONS 

In this section we will review the relation between hadron masses 

and lattice two-point functions. Then we will consider how coupling 

constants can be extracted from three-point functions. 

To evaluate masses and coupling constants we need a collection of 

field operators. For a pseudoscalar s or vector particle v define the 

field operators 

s(x) = Sf(X)A9(X)~, s f9 

(3.1) 

f9 v&x) = Sf(x)r,09(x)cv * 

For a baryon 8 or antlbaryon B define the fields 

h 
B(x) = efa(x)$;b(x)~kc(x) E 

abc ijk fgh 
xB +B , 

(3.2) 

8(x) = *~,(x)$~,(x)~~,(x) cabc xAjk +igh * 

The quantities e f9 and $fgh in eqs. (3.1) and (3.2) are flavor wave 

functions, xijk in eq. (3.2) is a spin wave function, and cabc in 

eq. (3.2) is the alternating index. The flavor wave functions are 

t 
normalized in such a way that the only nonvanishing entries for n+, P , 

proton, antiproton, A++ and i-- are 
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du du 
.+n+ = $p+ = 1 , 

uud uud 

+P ="P =l ' 
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(3.3) 

uuu uuu 
$A++ = ‘ii -- = l * 

The spin wave functions In (3.2) are normalized so that for a proton or 

antiproton with s,of l/2 and a A++ or i with sz of 3/2 the only nonzero 

components are 

112 121 
X z-X = 1, 

P P 

443 434 
x; =-xp =l, 

111 
XA = 1, 

(3.4) 

444 
xi = 1. 

Now let A(x) be one of the fields defined in eqs. (3.1) and (3.2). 

Define a(z;t) to be the Fourier transformed field 

a&t, = c exp(i z.:)A(:,t). (3.5) 

Then for large Values of t and of the 4-direction lattice periodicity N4 

with t<<N4 the correlation function of the adjoint operator fi+($;t) and 

A(0) has the asympototic behavior 
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<A+(O)a(t;t)> + ZA(4)exp[-EA($)tl , (3.6) 

where EA(z) is the energy in lattice units of the least energetic state 

lA,$ with momentum 7f which A(0) can create from the vacuum. The 

coefficient Z,($in eq. (3.6) is given by 

Z,(z) = (NlN2N3)-11~A,i;l~(i;O)l~~12 , 

where in> is the vacuum state. Both in> and IA,:> are normalized to one 

in this expression. A proof of eq. (3.6) can be obtained by 

representing the expectation value as the trace of a product of 

Heisenberg field operators and then inserting a complete set of 

Hamiltonian eigenstates between the pair of field operators. The masses 

reported in, for example, ref. (l-31 were obtained by fitting Monte 

Carlo values of the expectation on the left side of eq. (3.6) to the 

asymptotic from on the right side with z set equal to zero. 

In the valence approximation, which includes contributions of the 

form shown in Fig. la but omits virtual fermion loops such as Fig. lb, 

resonances such as the P do not couple to decay channels. As a result 

the energies which appear in eq. (3.6) for each resonance field will be 

the energies of the corresponding resonance. Thus the energy variable 

in eq. (3.6) for the field p&x) will be the energy of a p with momentum 

';f. In the full theory including fermion loops, however, if the volume of 

space is made sufficiently large and the masses of quarks sufficiently 

small, strong resonances will be able to decay. The energy entering 

eq. (3.6) for a resonance field will be the energy of the decay 

products. For pp(x) this will be the energy of a 2x state. If the 
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volume of space is small or the masses of quarks large, on the other 

hand, the theory including fermion loops will have the same behavior as 

the valence approximation. For the case of small spatial volume, thls 

is because the decays of the llghtest vector and baryon resonances occur 

only to states with orbital angular momentum of one. Therefore, the 

minimum energy for decay states with nonzero orbltal angular momentum 

will be above the masses of the resonances. If the quarks are heavy, 

the mass of the decay products will be pushed above the resonance mass. 

As a result, the resonances will become stable. 

Let us now consider expectation values of products of three fields 

and the relation of these quantities to hadron coupling constants. For 

large values of tI and t2 with N4>>t2>tl, 

<fi(o;t2);(d;tl)B(0)> + ZAB,(~)exP[-EA(o)(t2-tl)-Egotll~ (3.8) 

Here E*(O) and E8(3) are, respectively, the energy in lattice units of 

the lightest rest state created from the vacuum by At(O), and the energy 

of the lightest state with momentum 3 created from the vacuum by B(0). 

Eq. (3.8) can be proved by nearly the same argument which yields 

eq. (3.6). The coefficient ZABn($ in (3.8) becomes 

zABl(;f) = [ZA(0)ZB(d)]"2'A,01;Ib;o)lB~~~. (3.9) 

In both the valence approximation and the full theory including fermion 

loops, it is possible for the field fi(O;t,) in eq. (3.8) to couple the 

vacuum to a Bn state. As was the case for propagators, however, if 

quark mass is sufficiently large or the volume of space sufficiently 
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small the lightest state which fi(O;t2) creates from the vacuum will 

still consist of a single A particle. This situatlon holds for the 

numerical results we will present in sect. 6 and will be assumed for the 

remainder of the present discussion. 

According to the LSZ reduction formula, <A, Oi;(7f;O)i8,$> is equal 

to the A-& three point function truncated by removing appropriately 

normalized free propagators on the A and B legs of the vertex. What 

remains is a free propagator for the f leg, a kinematic factor for the 

truncated vertex, and the A-% coupling constant. Define the free field 

lattice propagator 

(D 
c Et -wltl 

P(E,W) = e e 

t=-oJ 

sinh w 
= 

cash w-cash E 

Then we have 

<B, 1 I ;(;f;O) 1 A,0 > = 

gABn d) J 
zT(;t, 

2E8&EA(0)2E,(;I) 
PIEA(0)-@l),E,,hl . 

(3.10) 

(3.11) 

Assembling eq. (3.8)-(3.11)we obtain for large tl and t2 with N4 >>t2>tl 
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(3.12) 

' gABm c 
exp[-EA(O)It2-tI]exP[-E~(if)ltI-tIlexP[-EB(d)Itll . 

t=-.n 

A normalization convention for the kinematic factor K(J), and thus 

for the coupling constant gABr, in eqs. (3.11) and (3.12) can be chosen 

conveniently by requiring truncated on shell three point functions to be 

given by a specified effective interaction in the continuum limit. For 

the coupling of a vector v to a pseudoscalar s and a w the most general 

effective vertex can be cast in the form 

S eff = gvsn I 
d4x v;(~)sj(x)s~~~(x)r Uk . (3.13) 

where rijk is a Clebsch-Gordon coefficient for the coupling among the 

isospin indices i,j, and k. Our normalization of rijk is chosen so that 

for the vertices pt-tntrO or K*++K+a' we have 

K& = 2131. (3.14) 

Here the initial vector particle is assumed at rest with. spin component 

0 along the direction of 1. 

For the coupling between nucleons and a pion, N-W, the most 

general effective vertex is 
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S eff = gNNr / 
d4xii(x)r5r' N(x)r'(x) , (3.15) 

where ri is a Pauli spin matrix acting on the nucleon isospin indices. 

For p+pn' with equal spin components of initial and final proton along 

direction 4, 

K(8) = ldl J 
*mN 

EN&+‘$ ’ 
(3.16) 

For the coupling between a spin 3/2 baryon B*, a spin l/2 baryon B 

and a pion the most general effective vertex is 

S = g8*B* 

eff 
d4xB:'(x)Bj(x)ar*k(x)Iijk , (3.17) 

where rijk is again a Clebsch-Gordon coefficient on the isospin indices 

i,j and k. Our normalizatlon of rijk is chosen so that for the decays 

L\++Ppn”, Cf++r+ro, c*~-+Az~ and 2 *o+$no with equal Initial and final 

baryon spin components along i 

K(;;) = 2121 J EB(&mB 
% * 

(3.18) 

This means that our coupling constants are appropriate to the given 

partial width rather than to the full width. 

The coupling constants and kinematic factors which we have defined 

are simply related to decay widths in the infinite volume continuum 

theory. By taking the absolute square of these amplitudes, averaging 
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over Initial spin states, sumning over final spin state and two-body 

phase space we obtain the width 

where d is 8 for meson decays and 4 for baryon decays. 

(3.19) 
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IV CORRELATION FUNCTIONS IN AN EXTERNAL FIELD 

For calculating hadron propagators, Fourier transforming one of the 

two operators by sumning over an entire time slice achieves a useful 

increase in statistics for negligible additlonal computer time and in 

addition makes the propagators easier to analyze by removing power 

factors, leaving simple exponentials. Similarly, for the three-point 

functions, we would like two of the three operators to be Fourier 

transformed to achieve both a gain in statistics and a simple 

convolution of exponentials in the functional form to be fit. In 

practice, however, the direct calculation of Fourier transformed 

three-point functions from products of quark propagators cannot be 

carried out in a reasonable amount of computer time. To calculate 

directly values of a three-point function at all the points needed to 

form the Fourier transforms of the pion field and the A field in 

eq. (3.12) would require running a Gauss-Seidel iteration O(NlN2N3) 

times on each Monte Carlo gauge configuration. This would cost far too 

much computer time. An alternative procedure is to obtain the 

three-point function of (3.12) by differentiating the AB two-point 

function with respect to an external pion field. The expectation value 

we need can be written 

<fi(O;t&;(i;+)B(O)> = ~ii(O;t2)B(0)>Jcr=8 

where <..... >e is a vacuum expectation with quark action SD in eq. (2.2) 

modified by adding an external pion source 
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S’Q 
= sQ+ ~C;“(d;tl)-~o(-d;t,rl 
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(4.2) 

= 
c 

i(x)c,,*(Y) + a 
c 

;(x)DxyW - 

XY XY 

In this equation ;'($,t,) is a Fourier transformed 11' field defined by 

eqs. (3.1), (3.3) and (3.5). The effect of the 1' terms in (4.2) on the 

valence approximatlon path integral is to replace eq. (2.2) with 

<F 
II 

e(u,)S(vp, = z 
-1 

/ 
d,,F detij l(C+uWuIVj -' 1 exp(SG) . (4.3) 

The procedure we adopt to measure <it(O;t2);($;tl)B(0)> is to 

evaluate <~W2)WOPu from eq. (4.3) using Monte Carlo and 

Gauss-Seidel and then differentiate with respect to 01. The amount of 

work required to find <a(O;t2)B(0)>u by Monte Carlo and Gauss-Seidel is 

no greater than what is needed for an ordinary two-point function. In 

particular we need only O(1) Gauss-Seidels for each Monte Carlo gauge 

configuration, not O(NlN2N3). 

It was not self-evident when we began our calculation that we 

actually would be able to find reliable values of the derivative of 

Monte Carlo averages with respect to a parameter. We found that this 

could be done, however, if a single ensemble of gauge configurations is 

used to evaluate the averages for a number of different choices of (I. If 

different ensembles of gauge configurations are used at each different 

U, statistical fluctuation occur In <x(O;t2)B(0)ja from one CI to the 

next and differentiation becomes difficult. On the other hand, using 

the same gauge conftgurations we found that for small values of (I 
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(~0.05) the dependence on (I is linear to within about 1% and the 

derivative can be measured quite accurately. Our final numbers were 

obtained by taking the difference between results at (I of 0.0 and 0.025. 
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V. HADRON SPECTROSCOPY 
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A. General Remarks 

To perform the analysis for the coupling constants, it was 

necessary to carry out a complete mass analysis for the relevant 

hadrons. We report on that analysis separately in this section. Using 

the operators defined in Sec. III. we may determine the asymptotic form 

of two point functions for mesons and baryons. For mesons, including a 

term for the backward propagating signal resulting from periodic 

boundary conditions, we have 

<m(o);($;q> --•f Z,($(q)t t ,E(q)(N,-t) ) (5.1) 

for t and (N4-t) sufficiently large, where N4 is the lattice periodicity 

In the time direction. As is well known, it is very costly in computing 

of time make N4 too long, so there is a significant contribution to the 

meson two point function from higher energy states at moderate values of 

t and N4-t. One may attempt to deal with this ccanplication by fitting 

meson propagators to a form which includes the contribution of two 

states 

<m(oj;i;(4;t)> = Zl(e-El(q)t t e-El(q)(N4-t)) + 

(5.2) 

Zh(e-Eh(q)t + ,-E,(q)(Nq-t') 

with the parameters Z1 and El referring to the light particle and Zh and 

Eh refering, to the heavy particle. This procedure suffers from the 

problems of fitting a Small set of data with a large number of 
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parameters. 

The fitting of the propagator may be carried out in a second way. 

From (5.1) we may determine an effective energy as a function of t by 

taking the ratio of the two polnt function for successive t values 

+E 
<m(Olm -(if;t)> = e q(l+e -Eq(N4-2t)) 
<m(O)iii(i;;t+l)> l+e-Eq(N4-2t-2) * (5.3) 

This may be solved for the effective energy Eq, as a function of t. One 

nice feature of plotting the effective energy as a function of t Is that 

it provides a test of whether Nt is large enough. It is necessary that 

the effective energy curve go to a constant in order to conclude that 

one has separated the lowest energy state from excitations. 

Generally, the two point functions are not fit well with Eq. (5.2) 

for t very small. The heavy particle parameters vary a great deal when 

the number of small t points used in the fitting is varied; however, the 

variation of the light parameters is small, and can be used to estimate 

the systematic error. The operators we have defined for the baryons use 

upper component quark fields only and therefore have asyimmtric behavior 

forward and backward in time. We limit our study of the baryon 

propagators to the signal propagating forward in time. Since the signal 

propagating backward In time is small for the baryons, this amounts to 

restricting t to be less then about half way across the lattice in the 

time direction. We fit the baryon two point function to a form which 

includes the contribution of two states. 
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cb+(o)6(d;t)> = Zle-E1(q)t + Zhe-Eh(q)t (5.4) 

for t i N4/2. As with the mesons, we can determine the energy in a 

second way. The effective energy formula for baryons is 

<b+(O)F(if;t)> 
Eq(t) = In 

<b+(O)6(;;;t+l)> 
(5.5) 

The remarks with regard to self consistency and systematic errors made 

in the case of meson spectroscopy also apply to baryons. 

Our calculations are done on a lattice 62~12x18 with 12 taken as 

the 3-direction (decay axis) and 18 as the 4-direction (time). The 

large transverse size of the lattice is required to make possible 

sufficiently small values of pion momenta to place the external pion 

close to mass shell. The decays we consider produce final states with 

orbital angular momentum 1 and therefore vanish if the final pion is 

given a momentum of exactly zero. With a transverse slze of 12 the 

minumum nonzero momentum for our choice of parameters is about 500 MeV 

compared to the physical decay momenta of 150-350 MeV for the processes 

we consider. We use B of 5.7, the same value chosen in ref. [l]. 

Gauge configurations were generated using the Metropolis algorithm. 

After equilibrating 1000 Monte Carlo sweeps, a gauge configuration was 

saved after each 500 sweeps. An ensemble of 20 gauge configurations was 

analyzed. For each configuration, quark propagators were computed for 

three mass values correpsonding to K of 0.325, 0.340 and 0.355. We used 

a chirality parameter r of 0.5 for reasons discussed in ref. [l] 
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8. Meson Spectroscopy 

Two point functions for the plan and rho have been calculated using 

a variety of operators at the movable end of the two point function. 

Non-local operators for the pion were also considered as an alternative 

source of pions. The Gauss-Seidel inversion technique provides the 

quark propagator from a fixed source site to all other sites on the 

lattice, thus one can easily calculate 

where U is a product of gauge matrices. We have considered operators 

where y = x t 0, x + 29, x + p t Q, x + 3p, that is, operators where the 

quark and antiquark are separated by 1,2,&Z, and 3 lattice units 

respectively. In all cases we sum over spatial directions to get a 

rotationally invariant operator. Similar operators were considered for 

the rho. All operators yielded similar mass estimates, giving 

confidence in the reliability of the results. This would likely not 

have held true for the baryons, had we tested similar operators for 

them, since there is little reason to believe our baryon propagators to 

have reached their asymptotic behavior (see below). 

In Figures 2 and 3 we show the two point functions for the local 

pion and rho. Flgure 4 contains plots of the effective meson mass as a 

function of t. We see that even w‘lth a lattice size of elghteen In the 

time direction the lattice Is not as long as one would like. There is a 

decrease in the slope of m(t), but no flat region. For large t, the 

slope for the plon is smaller than that for the rho. The propagators 

were also fit according to Eq. (5.2). Typical fits are shown in Figures 

2 and 3. The contribution from the light state is shown separately. 
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Because the process we are interested In involves pions with 

non-zero momentum, we have also measured the two point function for 

particles wlth momentum. The particle energy is in good agreement with 

relativistic dispersion. The normalization factor Z, does not have the 

expected form constant/E,, . however, a small error in mass is correlated 

with a large error In 2,. 

C. Baryon Spectroscopy 

We have looked at two point functions for the N, A, A, C, z*, 8, 

a* , and the Q-. The up and down quark masses are taken to be equal. In 

Figure 5 and 6 we show the two point functions for the delta and nucleon 

up to half way across the lattice. The propagator remains posltive for 

one more plane, before going negative because of the periodic boundary 

conditions. The last positive point is seen to deviate significantly 

from a good straight line fit to the propagator for t=7,8,9, especially 

for lighter quark masses. In Figure 7 we show the effective mass as a 

function of the distance from the source. For both the nucleon and the 

A, there is clearly no region of flat behavior of a pure state before 

the signal propagating the "wrong" way around the lattice becomes 

important at time slice 9. In order to get more insight into the errors 

and finite time effects, we show In figures 8 and 9 effective mass plots 

for separate baryon spin states analyzed individually. We note that 

they are by no means degenerate, as they should be. The plots are shown 

for the lightest of our three quark mass values, which gave the largest 

spread among spin states. 
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In the case of the nuceon, we also split the data up into four 

groups by averaging all states together in ensembles of five lattices as 

shown in Figure 10. Here the spread of the effective mass increases as 

one goes from t=6 to t=8. One sees that the spread between ensembles is 

bigger than the spread of different states. 

D. Extrapolation in the hopping parameter and discussion of errors 

It is well known that the Gauss-Seidel technique fails to converge 

for small quark mass. Thus, it is necessary to do an extrapolation to 

the physical value for the up and down quark masses. In Figure 11, we 

put mw 2 and ma versus 1/2K. From the x axis intercept of the pion line, 

we determine the critical value, Kc, where the pion mass vanishes. This 

is approximately the physical value since the pion is so light. Mass 

ratios may be computed without a knowledge of the lattice spacing a. 

The hopping parameter for the strange quark may be determined in a 

number of ways. We choose to fix the ratio of a strange hadron mass to 

a non-strange hadron mass. In particular, we have picked P- and A, 

since this choice causes all baryon masses to agree we?? with 

experiment. An alternative would be to use the string tension to fix 

the scale and a strange particle mass, to fix the strange quark mass. 

Table I shows how the particle masses change when the fitting 

procedure used to determine a mass from the propagator is varied. The 

first column (DE) corresponds to a fit including the contribution of two 

exponentials (see Eqs. (5.2) and (5.4)). ignoring the first three 

points of the propagator in the fit. Subsequent columns come from using 

the effective mass (see Eqs. (5.3) (5.5)), with distances 6,7, and 8 

(EM6,7, and 8). We note that the masses fall as the distance increases 
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fn accord with figures 4 and 7. The masses in the upper half of Table I 

are given in units of inverse lattice spacing. Much of the variation in 

the values for different fitting procedures corresponds merely to an 

overall change of scale. We have therefore also shown the masses scaled 

to the calculated nucleon mass. One sees that the strange particle 

masses vary less than 10 percent, and the delta by less than 10 percent. 

The statistical errors were estimated using the jackknife method, 

which we describe separately in the Appendix. The essence of the method 

is to obtain the estimated error from the variance of the results 

obtained by analyzing data sets with one (or a few) elements removed 

from the original data set. This ia a much more stable and reliable 

procedure that the usual method of analyzing subensembles containing a 

relatively small number of lattices. Subensembling is possible in this 

approach by removing increasingly large sets of consecutive lattices, A 

subensembling analysis for our hadron masses yielded identical error 

estimates (to within 5 or 10%) when 1, 2, or 4 consecutive lattices were 

removed, indicating no serious correlations. Since our lattice are 

separated by 500 Monte Carlo sweeps (thought to be a large number) this 

is not surprising. (However, more surprisingly, for our coupling 

constants we found small but noticeable correlatins over 1000-1500 

sweeps; see below.) Our calculated masses with statistical errors are 

compared with experiment in Table II. 

E. Comparison With Other Calculations 

It is easiest to make a comparison with other groups whose 

calculations are most similar to ours. Duffy et al *I have done a 

calculation on a 63x14 lattice with ~5.7. Since we both use the same 
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values of the hopping parameter a direct comparison may be made. Our 

pion masses are slightly lower, with 1/2Kc given by 1.29 in our case and 

1.25 in theirs. The rho masses are roughly comparable. Our nucleon and 

delta masses are quite a bit lower. Of course, we have seen that the 

effective mass is dropping as t increases. It is therefore not 

surprising that our lattice, which is longer in t than that of Ref. 11, 

gives lower baryon masses. Comparing meff(6) with the results plotted 

in Ref. 11, our delta is somewhat heavier, our nucleon somewhat lighter. 

When the extrapolation is made to the physical quark mass, our rho to 

proton ratio is .60, compared to the value .44 in Ref. 11. The physical 

value is .82. For the delta to nucleon ratio, our result is 1.32 

compared to 1.04 for Ref. 11 and 1.31 for experiment. There is some 

improvement on our larger lattice. 

Bowler et all*have recently reported a study on an a3 x 16 lattice 

at a = 5.7. They have used Neumann boundary conditions in time. If one 

looks at their effective mass plots, it appears that the mass is no 

longer dropping by what in our notation is m,,,(6) (meff(lO) in their 

notation). With periodic boundary conditions the masses are still 

falling. Since we have the same coupling, and these authors report 

their masses in lattice units, it is easy to compare results. The rho 

mass agrees within errors. Our nucleon mass is 1 to 1.5 standard 

deviations lower in lattice units.- Our delta is 1.5 to 2 standard 

deviations heavier. It is not clear what accounts for the difference in 

the delta-proton mass difference. The total volumes of the lattices are 

comparable since the sizes are 62 x 12 and a3. There could be a slope 

dependence, or the fact that we used different operators for the baryons 

could play a role. There have been a number of calculations at a=6 with 
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a comparable or smaller spatial lattice size. The physical box size is 

smaller because the coupling is weaker. Lipps et al.'* have done a 

calculation on a lo3 x 20 lattice. They found an improvement in mp/mp. 

Their value was .66. The delta proton splitting was a bit smaller. 
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VI. HADRON COUPLING CONSTANTS 

To obtain coupling constants from the three point function data, 

energy and renormalization constant parameters obtained from the 

previously described two point function analysis are plugged into the 

expected functional form of the three point function, eq. (3.12). The 

remaining parameter in (3.12), gABr, is then obtained by comparing 

(3.12) with the Monte Carlo data for the three point function. The 

results here are actually less sensitive to the detailed fitting 

prescription than the fits to the two-point functions described in the 

last section. In Fig. 12 we show our data for the pm three-point 

function with the pions at fixed time slices 0 and 4 as a function of 

the P time. The graphs include the reflected signal due to periodic 

boundary conditions. The solid line is the analytic evaluation of 

Eq. 3.12. Its shape agrees very well with our data. Our value of gpnr 

comes from comparing the normalization of the two curves at the trough, 

where the p is farthest from the two pions; it is nice to see that about 

the same value for gprl. is obtained even when the p is quite close to 

the pions. Values of energies, renormalization constants and gprr as 

function of the hopping constant K are shown in Table III. We have also 

included, for reference, values of the renormallzed quark mass, 

(2K,)-l-(2K)-l. where Kc is the critical K at which the pion mass is 

zero. 

Table III strongly suggests that an extrapolation of gpnn to the 

physical value of K can be done reliably. However, we note that while 

linearity of the three-point function in the strength a of the external 

field was true to high accuracy on each lattice individually, the linear 
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extrapolation in l/K is good only statistically. Although linearity in 

l/K is excellent on the data analyzed as a whole, it is possible to find 

subsets of lattices for which gPrX is not very linear as a function of 

l/K. For baryons the problem Is somewhat worse than it is for mesons. 

To test the consistency of our procedure, we evaluated the pin 

three point function, which must be zero by g-parity conservation. We 

found it to be an order of magnitude smaller than the plr three-point 

function, fluctuating in sign, and statistically consistent with zero. 

Extensive checking was done to determine the extent to which 

excited states contaminated our results. It can be seen in Figure 12 

that the raw data for the paw three point function differs from the 

expected convolution of pure exponentials only by about 50%, even when 

the 0 operator is placed on the same time slice as one of the 1 

operators. This is to be contrasted with the analogous results for the 

two point functions, which deviate from pure exponentlal form by over an 

order of magnitude when both operators are on the same time slice. 

Since our results are obtained by taking the p operator as far as 

possible from the two pions, it is clear without doing further checking 

that there is not likely to be significant contamination in our results 

due to excited p states. On the other hand, a pnn' signal has a shape 

very similar to the one we are looking for. We therefore repeated the 

entire calculation on three of our lattices using a different operator 

for the external I source, which connects to excited II states with a 

different ratio of renormalization constants. The operator we used was 

the nonlocal quark-antiquark operator at nearest neighbor sites 

connected by a link matrix. The behavior of the renormalization 

constants for operators of this type is shown in Figure 13 for various 
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separations. By examining the two point functions for these operators, 

we determined the ratio of the renormalization constants connecting the 

local and nonlocal operators to the pion state. Then, three-point 

function data using the nonlocal operators was analyzed using the Z's 

for the nonlocal operators. The value of gplr for each of the three 

lattices was the same obtained with the local operator to an accuracy of 

4x9 indicating surprisingly little contamination from excited pion 

states. (see Table IV). 

The statistical error estimates were again obtained by the method, 

described in the appendix, of performing the full analysis leading to 

the coupling constants on data sets with one or a few elements removed. 

Correlations between successive lattices may be tested for by comparing 

error estimates obtained by removing increasing numbers of consecutive 

lattices from the data set. For example, for the ANT coupling constant 

at K=.355, for which we did a very extensive analysis, we obtained the 

value g=4.38+0.93. The error estimates obtained for m1,2,3,4,6, and 8 

lattices removed were .66, .BO, .89, .94, .93, and .89. The error 

estimate for this quantity does not level off until the bin size m=3 

(-1500 sweeps). This is in marked contrast to the errors on the hadron 

masses which were essentially constant for all bin sizes. We have 

averaged over all possible ways of removing m consecutive lattices from 

the data set, even though not all the ways are statistically 

independent. The error estimates for m larger than about 5 are not very 

reliable, since the number of independent subsamples becomes relatively 

small (~4). The accuracy of the errors themselves may be estimated by 

doing a second order jackknife, that is, doing a full jackknife on the 

dat sets with a few lattices already removed. This is a lot of work and 
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we have done it only for the ANn coupling constant at Kz.355. The 

result is g=4.38+(0.93+0.26). For most of the coupling constants 

calculated, we saw correlations similar to those described above, 

lasting over 2 or 3 consecutive lattices. The statistical errors given 

in the fifth row of Table V are for a bin size ~4, which seemed to be 

the best compromise between removing the effects of correlations while 

keeping the largest possible number of independent subsamples (n/m5 in 

this case). 

It is interesting to note that the statistical errors on gpnr, 

shown in Table III are much smaller than some of the errors in the 

renormalization constants Zx and Za, even though the expression for gprr 

is given in terms of the Z's and the masses. This is because errors in 

the Z's are very highly correlated with errors in the masses. When each 

propagator JZ ewmt is truncated from the three-point function to obtain 

the coupling constant, errors in the two quantities cancel out rather 

well to leave a relatively small statistical error in gpnr. The same 

effect makes gP,,,, rather insensitive to the question of whether or not 

our lattice is long enough in time to see the pure particle pole. On 

the basis of the data 2 time slices away from the end of the lattice, we 

obtained somewhat higher masses as discussed in the preceeding section, 

and much larger renormalization constants; on the other hand, the value 

of 9 Dl'tl obtained was almost unchanged. 

Figure 14 is the graph of a typical baryon decay three point 

function, the ANn amplitude. The local proton operator is at timeslice 

0. The pion carries momentum, and is fixed at t=4 as before. The 

amplitude is shown as a function of the timeslice of the A, which is at 

rest. The data follow the theoretical expectation reasonably well, but 
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the agreement is not as spectacular as for the meson decay amplitudes. 

In particular, the fall-off of the three point function when the A is 

far from the 1 N system has a different slope than that expected from 

the A mass parameter obtained from analysis of the A two point function. 

As may be seen from the figure, the value of the coupling constant 

obtained by matching the curve with the data will depend on the 

timeslice at which the data is fit. This introduces a source of error 

into the baryon coupling constants, possibly as large as 50%. For the 

meson decays, this was a negligible source of error. One possible 

explanation of this slope mismatch is that the lattice is not long 

enough in the time direction to project out the lowest mass state in the 

baryon two point functon. If the three point function is less 

contaminated with excited states, as seemed to be the case for the 

mesons, it would give a truer (lighter) value for the baryon mass. We 

suspect that the greater difficulty of seeing the pure lowest mass 

baryon states is a contributing factor to the too large ratio of baryon 

to meson masses in many calculations of this type, including ours. 

Table V contains our results at the three values of the light quark 

mass and the extrapolations to the proper light quark limit. The meson 

amplitudes are about a factor of 13 to 2 below experiment, the baryon 

amplitudes a factor of 2 to 21. The additional discrepancy for baryons 

is in the right direction to have been caused by the slope mismatch 

noted above. The discrepancies with experiment are not uniform for the 

four decuplet baryon decays, meaning that width ratios as well as widths 

do not come out perfectly in our data. In fact, our width ratios are 

similar to those predicted by flavor SU(3) symnetry. The two sets of 

predictions are compared in Table VI. 
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There are at least two possible sources of error which might 

produce the factor of two discrepancy between our amplitudes and the 

experimental data. One is that our calculation has been done with one 

of the pions somewhat off mass shell (E2-q2-M2 = -.29 GeV2 for the Pnn 

case); our results may thus be suppressed by a form factor. A crude 

estimate based on data for the process nprpp and the one-pion exchange 

model indicates that this effect may be rather large. Another 

potentially large source of error is the finite size of the lattice 

spacing. Strong coupling results for this amplitude yield gpln = 1.36 

and -98," a factor a 5 or 6 discrepancy with data. It would not be 

surprising if a discrepancy such as the one we find is obtained in the 

crossover region due to finite lattice spacing effects. 

We should also mention errors due to the valence approximation and 

finite volume effects. We hope that these are not at the factor of two 

level, but we have no evidence one way or the other. The expectation 

value of the Wilson line on our lattices is roughly .03. 
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VII. Conclusions 

The most important result of our calculation is the demonstration 

that the investigation of multihadron processes in lattice gauge theory 

can be carried out on existing computers using reasonable amounts of 

computer time. The physics results we have obtained are qualitatively 

very reasonable. If the major source of the discrepancy with experiment 

is a form factor effect, substantial quantitative improvement should be 

possible by increasing the transverse dimension of the lattice by about 

a factor of two to bring the momentum of the decay down to near its 

physical value for the various decay processes. If, as is equally 

plausible, finite lattice spacing effects are very important, 

quantitative improvement may be more difficult. Many other processes 

can clearly be calculated using similar techniques, for example, 

electromagnetic form factors and decays of hadrons. This approach is 

now being used6 to calculate weak matrix elements for the AI=l/2 rule. 
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In this Appendix we discuss our procedure for estimating 

statistical errors by subensemble analysis. Calculation of statistical 

errors in lattice gauge theory is complicated by the fact that 

consecutive lattices in an ensemble are not usually completely 

statistically independent. The correlation length depends on both the 

coupling constant and on the quantity being mesured. This means that 

the standard formula for the estimated error 

E2 = <(x - 1;)2>/(N-1) (A.la) 

cannot be applied naively. Wilson' has described how to deal with this 

problem for the case of Wilson loops. Eq. (A.la) is generalized to 

E2 = <(x, - - 2 x) >/(n/m-1) (A.lb) 

where x, is one of the set of averaged m-tuples of the set of x: 

(x t... 
1 

txm)/m. (A.la) and (A.lb) are exactly equivalent when the average 

over all possible m-tuples is taken. They are equal in the mean when 

some random subset of subensembles is taken. When there are 

correlations between nearby lattices and the average is taken over the 

set of n/m subensembles of m consecutive lattices, (A.lb) gives a larger 

and truer estimate of the expected error. Since correlations tend to 

die out after enough iterations, as m is increased from one to 2, 4, 8, 

16..., the expected error given by (A.lb) typically rises with each 

increase in m by a factor of about Jz at first, and then levels off to 

the correct value. 
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For physical quantities such as hadron masses or the string tension 

it is impossible to apply this procedure unless the ensemble of lattices 

is huge. The basic problem is that these quantities involve taking a 

logarithm of a hadron propagator or of a function of Wilson loops. The 

loops or propagators are often negative on a few of the lattices in the 

ensemble, making it impossible to subensemble on groups as small as one 

or two configurations. Even with slightly larger subensembles, the 

physical quantities obtained from the subensembles are subject to wild 

fluctuations which do not necessarily average out, since taking the 

logarithm does not cotmmte with the averaging operation. 

In this appendix, we give a method for subensembling physical 

quantities which is stable and well behaved even for relatively small 

data sets. For large data sets, it gives estimated errors approximately 

equal to the standard subensembling procedure. For Wilson loops and 

similar quantities it is identical to the procedure used by Wilson. Our 

method is based on the jackknife procedure. 15 The fundamental jackknife 

formula is 

E2 = (n-l)<(a - P)2> 

where p is the result of an analysis of n data elements, and rho is one 

of the results of an analysis on the n data sets of n-l elements each 

obtained by removing one of the elements of the original data set. If 

the analysis to be performed is simply the averaging of a set of 

numbers, then (A.2a) and (A.la) are identical. However, for obtaining a 

mass from a set of n hadron propagators, (A.2a) gives a much more stable 

and accurate error estimate than would be obtained from the mean square 

of the masses obtained by analyzing individual propagators. In 
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addition, a simple extension of this formula permits accurate 

subensembling. The formula 

E* = (n/m - I) ((0, - 7;)*, , 

where pm is one of the results obtained from a data set with m elements 

removed, is also identical to its counterpart (A.lb) for the case of 

averaging a set of numbers. However, for hadron properties, the results 

pm obtained from data sets with m = 1, 2, or 4 elements removed from the 

full ensemble of lattices are much more stable and relfable than the 

results obtained by analyzing a a set of 1, 2, or 4 lattices. When m is 

increased by a factor of two, E rises by roughly a factor of X2 if the 

consecutive sets of lattices removed are highly correlated and stays 

roughly constant if they are uncorrelated. This method shares the 

problem of the ordinary subensembling procedure that the reliability of 

the error estimates decreases as the number of independant subensembles 

n/m becomes small. 

We have emphasized the advantages of this method particular to 

lattice gauge theory calculations. We should also mention that this 

method and other related computer-intensive methods which are described 

in Ref. 15 have other advantages, in particular the possibility of 

relaxing the assumption of a normal distribution. It is also possible 

to calculate the reliability of the errors themselves by performing a 

second order jackknife to estimate the variance of the error estimate. 

As reported above, we have applied this method very successfully to 

hadron masses and coupling constants. For most coupling constants, we 

found clear evidence for correlations which last up to 1000-1500 gauge 

sweeps (m=2 or 3 in Eq. (A.2b)) and no evidence for correlations 
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thereafter. For masses, we found no evidence for correlations between 

lattices separated by 500 sweeps. The method required the complete 

automation of the analysis process in a computer program, but resulted 

in an understanding of statistical errors comparable to that obtainable 

for Wilson loops with a similar number of lattices. 
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TABLE I 

Variation of masses due to fitting procedure. Masses are 
extrapolated to the chiral limit. The first column (DE) contains 
masses obtained from a double exponential fit. The last three 
columns (EM) are the effective masses at timeslices 6, 7 and 8 
respectively. 

lpi 
A 
K 
K* 
E 
E' 
z 
g* 

i 

t: 
K' 
I: 
r* 
z 
z* 

DE EM 6 EM 7 

Mass (lattice units) 

EM 8 

0.545 0.738 0.610 0.558 
0.999 1.131 1.042 0.952 
1.357 1.492 1.381 1.394 
0.671 0.716 0.670 0.671 
0.797 0.934 0.823 0.799 
1.235 1.407 1.300 1.194 
1.522 1.667 1.553 1.555 
1.440 1.612 1.464 1.445 

.680 1.854 1.716 1.724 

Mass ratio M/MN 

0.546 
1.000 
1.358 
0.671 
0.798 
1.236 
1.523 
1.441 
1.681 

0.652 0.586 
1.000 1.000 
1.318 1.327 
0.637 0.643 
3.825 0.790 
1.243 1.247 
1.472 1.490 
1.424 1.404 
1.638 1.646 

0.586 
1.000 
1.464 
0.705 
0.839 
1.254 
1.634 
1.516 
1.810 
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TABLE II 
Comparison of masses with experiment 

Particle Mass (GeV) 

Lattice Experiment 

.932 r.092 .938 
1.232 (input) 1.232 
1.155 +.063 1.194 
1.124 f.068 1.115 
1.377 t.055 1.385 
1.327 t.045 1.318 
1.523 t.037 1.530 
1.672 (input) 1.672 

.138 (input) .138 

.562 t.072 .769 

.605 k.017 .495 

.746 t.042 .892 
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TABLE III 
Energies, decay constants and g for three values of the hopping 
parameter K. The pions have mom&%m 2n/12a = 520 MeV. 

K En Zll MP zP 
gpnn (2K)-1 -(2Kc)-1 

.325 1.14 i.011 0.328t.018 1.12 t.021 0.287t.025 2.76t.19 .248 

.340 1.01 t.013 0.317t.024 0.996t.031 0.207t.031 2.84f.25 .180 

.355 0.882t.015 0.316k.031 0.877f.050 0.139+.036 3.Olk.40 .118 
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TABLE IV 

Ratio of go,,,, from local and nonlocal plon operators. 

gloc'gnonloc 

K = .325 K = .355 

Lattice 2 1.03 1.05 
Lattice 6 .93 .98 
Lattice 9 .96 .98 
Average .97?.04 l.OOi.03 
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Hadronic coupling constants compared with experiment 

K A-MT r*-ar C*+A,i\n 2'-En NNn K'-+KX 

.325 4.83 2.40 4.15 2.38 8.12 1.31 

.34 4.79 2.44 4.22 2.48 7.94 1.53 

.355 4.38 2.36 4.03 2.50 7.18 1.87 

KC 4.06 2.35 3.98 2.63 6.46 2.33 
21.09 +.62 t.83 2.53 2.67 +.38 

Expt. 11.10 4.96 9.04 5.23 13.4 3.26 

fJ*n 

2.74 

2.78 

2.87 

3.23 
i.61 

6.11 
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TABLE VI 

Comparison of width ratlos with SU(3) predictions 

r(L*+En) I-( E'-hb) r(2*+%) 

rA rA rA 

Experiment .036 .267 .079 

SU(3) 
Symnetw .056 .356 .165 

Monte 
Carlo .067 .374 .166 
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FIGURE CAPTIONS 

Fig. 1: Schematic graphs of quark contributions to meson 

two-point functions in the quenched approximation 

(Fig. la) and the full theory (Fig. lb). 

Fig. 2: Pion propagator as a function of Euclidean time for the 

howi w parameter K=.355. The solid line is the 

two-exponential fit using Eq. (5.2); the dashed line is 

the contribution to the fit of the lighter state. 

Fig. 3: Same as Fig. 2, but for the p propagator. 

Fig. 4: "Effective masses" of the I (crosses) and p (circles) 

as a function of t, obtained from the propagator data of 

Figs. 2 and 3 via Eq. (5.3). 

Fig. 5: A propagator as a function of Euclidean time for the 

howl ng parameter K=.355. The solld line is the 

two-exponential fit using Eq. (5.4); the dashed line is 

the contribution to the fit of the lighter state. 

Fig. 6: Same as Fig. 5, but for the nucleon propagator. 

Fig. 7: "Effective masses" for the A and nucleon as a function 

of t, obtained from the propagator data of Figs. 5 and 6 

via Eq. (5.5). 

Fig. 8: Effective mass plot for the four spin states of the 

nucleon and antinucleon analyzed Individually. The 

nucleon with spin up is represented by *, with spin down 
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by +. The antinucleon with spin up is represented by X, 

with spin down by o. K=.355. 

Fig. 9: Effective mass plot for the four spin states of the A, 

analyzed individually. The 3/2, l/2, -l/2, and -3/2 

states are represented by *, +, x, and o respectively. 

K=.355. 

Fig. 10: Effective mass plot for subsets of the nucleon data at 

K=.355. There are four subsets of data containing 

lattices l-5, 6-10, etc. 

Fig. 11: The p mass (solid line) and the mass squared of the pion 

(dotted line) plotted vs. the inverse hopping parameter. 

Fig. 12: Data for the pnn three-point function (crosses) as a 

function of the time slice of the p. The pions are fixed 

at time slices 0 and 4. The solid curve is the 

theoretical expectation based on Eq. (3.12) with 

parameters fixed by the two-point function results. It 

is normalized by fixing gpnn so that the solid curve 

fits the Monte Carlo data where the o is far from the 

pions. 

Fig. 13: Connection of various quark bilinear operators with the 

pion state. The quark and the antiquark operators are 

separated in a straight line a distance m lattice 

spacings. 
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Fig. 14: Data for the ANT three-point function as a function of 

the time slice of the A. A pion with momentum is fixed 

at time slice 4, and a local proton operator is at site 

0. The solid curve is the theoretical expectation. 
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